Effects of Different Logging Residue Treatments on Acid Hydrolyzed Soil Organic Carbon Fractions and Soil Microbial Communities in a Chinese Fir Plantation
DOI:
CSTR:
Author:
Affiliation:

1.School of Geography, Fujian Normal University;2.Fujian Provincial Key Laboratory for Plant Eco-physiology;3.Institute of Geography, Fujian Normal University;4.Fujian Sanming Forest Ecosystem National Observation and Research Station

Clc Number:

Fund Project:

National Key Research and Development Plan (2016YFD0600304); Foreign Cooperation Project of Science and Technology Department of Fujian Province, No. 2022I0012; Natural Science Foundation Project of Carbon Neutrality Research Institute of Fujian Normal University (TZH2022-01)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective] Acid hydrolyzed soil organic carbon fractions are important in soil, and their changes of contents will affect soil microbial community composition.To study the response of acid hydrolyzed soil organic carbon fractions and soil microbial communities to different logging residue treatments. [Methods] Three treatments of residue removed (R), residue burnt (RB) and residue retained (RR) were applied to a Chinese fir plantation in the Castanopsis kawakamii Nature Reserve in Sanming Fujian, and soils in different soil layers (0-10 cm, 10-20 cm) were collected three years after planting young Chinese fir to study acid hydrolyzed soil organic carbon fractions (labile fraction Ⅰ, Ⅱ and recalcitrant fraction) and microbial community. [Results] (1) Different logging residue treatments had no significant effect on acid hydrolyzed soil organic carbon fractions in the 0-10 cm soil layer (p>0.05). In the soil layer of 10-20 cm, the content of labile fraction Ⅰ (LP Ⅰ) was significantly higher in the RR (7.2 g·kg-1) and R (6.8 g·kg-1) treatments than in the RB (4.7 g·kg-1) treatment, and the contents of labile fraction II ( LP II, 1.06 g·kg-1) and recalcitrant fraction (RP, 3.59 g·kg-1) in the RB treatment were significantly lower than those in the R treatment (1.32 g·kg-1 and 7.79 g·kg-1, respectively) (p<0.05). The contents of acid hydrolyzed soil organic carbon fractions in the 0-10 cm soil layer of the RB treatment were all significantly higher than those in the 10-20 cm soil layer (p<0.05). (2) The microbial biomass carbon content of the RB treatment in the 0-10 cm soil layer (335.1 mg·g-1) was significantly lower than that of the RR (540 mg·g-1) and R (453.7 mg·g-1) treatments(p<0.05), but there was no significant difference in soil microbial biomass nitrogen in each soil layer between the different treatments (p>0.05). Soil microbial biomass phosphorus content and total PLFAs in two soil layers were significantly higher in RR treatment than in RB treatment (p<0.05). In the 0-10 cm soil layer, the F:B ratio was significantly higher in RB treatment than in RR and R treatments, while GP:GN ratio was significantly higher in RR treatment than in RB and R treatments (p<0.05). (3) There were significant positive correlations between acid hydrolyzed soil organic carbon fractions and total microbial biomass and PLFAs content of each microbial taxon (p<0.05). [Conclusion] Retention of logging residue treatments facilitated the maintenance of different soil organic carbon fractions at high levels and had a positive effect on soil microbial biomass and soil microbial community composition. This study is of great significance for taking reasonable management measures of Chinese fir plantations and improving soil productivity.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 04,2024
  • Revised:September 22,2024
  • Adopted:September 23,2024
  • Online: January 09,2025
  • Published:
Article QR Code