淮北平原作物根区土壤水分的来源及其量化研究
DOI:
CSTR:
作者:
作者单位:

1.河海大学、水灾害防御全国重点实验室;2.河海大学、水利部淮河水利委员会;3.河海大学、南京水利科学研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Study on the Source and Quantification of Soil Water in the Root Zone of Crops in Huaibei Plain
Author:
Affiliation:

Hohai University, National Key Laboratory of Flood Disaster Prevention

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】探讨1990-2022年淮北平原作物根区土壤水分的来源与量化情况,为作物灌溉管理和水资源利用提供科学指导。【方法】文章首先结合皮尔逊相关性分析和多元回归计算得到降水、地下水对作物根区土壤水的贡献度,后利用多元线性回归及长短期记忆网络(LSTM)模型量化模拟根区土壤水。【结果】①夏玉米在0-10cm土层中,除出苗-拔节期降水贡献度为55%外,其余阶段地下水贡献度均可达到61%-68%;在10cm以下土层中,根区土壤水主要来自相邻上层土壤水,其占比可达74%以上。后期根系逐渐生长至100cm,尤其在40-80cm土层中,地下水对土壤水的贡献度明显增大,占到9%-22%。②冬小麦在0-10cm土层中,除播种-出苗期和返青-拔节期地下水贡献度为50%以上外,其余阶段降水贡献度均可达54%-73%;在10cm以下土层中,根区土壤水主要来自于相邻上层土壤水,占比可达63%以上。但在40-80cm土层中,地下水与降水贡献度相对来说均有增大。③LSTM模型在量化模拟土壤水方面比多元线性回归更加稳定和准确,模型评价指标可以达到R2>0.6、MSE<10,能够较好地反映土壤水分动态变化规律。淮北平原其他站点对上述模拟结果的应用也进一步验证了模型的可行性。【结论】夏玉米0-10cm土壤水主要来源为地下水,冬小麦0-10cm土壤水主要来源为降水;10cm以下土壤水的主要来源为相邻上层土壤水(包含降水、灌溉水等)。结合不同生育阶段根区土壤水的来源进行量化模拟,再通过作物根区土壤水分变化趋势对灌溉方案进行动态调节,有助于优化灌溉管理,提高水资源利用效率。

    Abstract:

    [Objective]To explore the sources and quantification of soil moisture in the crop root zone in the Huaibei Plain from 1990 to 2022, and to provide scientific guidance for crop irrigation management and water resource utilization. [Methods] This article first combines Pearson correlation analysis and multiple regression to calculate the contribution of precipitation and groundwate r in soil water in the crop root zone, and then uses multiple linear regression and long short-term memory network (LSTM) models to quantitatively simulate the soil water in the root zone. [Results] ① For summer corn, in the 0-10 cm soil layer, except for the 55% contribution of precipitation during the seedling-jointing period, the contribution of groundwater in other stages can reach 61%-68%; in the soil layer below 10cm, the soil water in the root zone mainly comes from the soil water in the adjacent upper layer, accounting for more than 74%. In the later stage, the root system gradually grows to 100cm, especially in the 40-80cm soil layer, the contribution of groundwater to soil water increases significantly, accounting for 9%-22%. ② For winter wheat, in the 0-10 cm soil layer, except for the sowing-seedling period and the greening-jointing period, the contribution of groundwater in other stages can reach 54%-73%; in the soil layer below 10cm, the soil water in the root zone mainly comes from the soil water in the adjacent upper layer, accounting for more than 63%. However, in the 40-80cm soil layer, the contribution of groundwater and precipitation has increased relatively.③The LSTM model is more stable and accurate than multiple linear regression in quantitatively simulating soil water. The model evaluation index can reach R2>0.6 and MSE<10, which can better reflect the dynamic changes of soil moisture. The application of the above simulation results at other stations in the Huaibei Plain further verified the feasibility of the model. [Conclusion] The main source of soil water in the 0-10cm layer for summer corn is groundwater, and the main source of soil water in the 0-10cm layer for winter wheat is precipitation; the main source of soil water below 10cm is soil water in the adjacent upper layer (including precipitation, irrigation water, etc.).A quantitative simulation was performed based on the sources of soil water in the root zone at different growth stages. It is helpful to dynamically adjust the irrigation plan through the changing trend of soil moisture in the root zone of the crop. To optimize irrigation management and improve water resource utilization efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-24
  • 最后修改日期:2024-11-01
  • 录用日期:2024-11-08
  • 在线发布日期: 2025-02-21
  • 出版日期:
文章二维码