施氮对高寒垂穗披碱草草地根际、非根际土壤肥力的影响
作者:
作者单位:

作者简介:

高浩诚(2000-),男,在读硕士研究生,主要从事草地生态研究。E-mail:1219612060@qq.com

通讯作者:

中图分类号:

基金项目:

南疆重点产业创新发展支撑计划项目(2022DB017)


Effects of Nitrogen Application on Rhizosphere and Non-rhizosphere Soil Fertility of Alpine Elymus Nutions Grassland
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究不同氮素添加水平对高寒生态条件下垂穗披碱草地土壤理化性质及速效养分的影响,选取天祝高山草原试验站2龄垂穗披碱草人工草地开展氮素添加试验。采用单因子试验设计,参照中国氮沉降分布格局确定试验地氮素添加剂量,设置对照N0(不施氮)、N1(12 kg/hm2)、N2(24 kg/hm2)、N3(48 kg/hm2)和N4(96 kg/hm2)5个氮素添加水平,每个处理4次重复。于2021年7月初和8月初2次施肥,9月份采集各处理根际、非根际土壤样品进行测定。结果表明:施氮水平对根际土碱解氮含量以及非根际土容重产生极显著影响(p<0.01),对根际土有机质及速效磷含量产生显著影响(p<0.05)。根际土中,随施氮水平上升,土壤含水量呈上升趋势;土壤pH缓慢下降,N4处理最低;N3处理下,根际土碱解氮、速效磷及速效钾较对照组分别显著提高8.92%,44.38%,16.00%(p<0.05);土壤有机质含量显著高于对照组(p<0.05);非根际土中,随施氮水平上升,土壤碱解氮及速效磷含量先上升后下降,N3处理达峰值(p<0.05);土壤pH呈先上升后下降趋势;土壤有机质含量则在N4水平处达峰值(p<0.05)。同一施氮水平下,除N3水平外,根际土含水量、速效磷及速效钾含量低于非根际土;根际土pH、有机质含量及土壤碱解氮含量均高于非根际土。灰色关联度综合分析表明,N3与N4处理分别对根际与非根际土理化性质及速效养分影响最大。

    Abstract:

    In order to investigate the effects of different nitrogen addition levels on soil physicochemical properties and available nutrients of drooping paniculus calcareous grassland under alpine ecological condition, the experiment of nitrogen addition was carried out in the 2nd age paniculus calcareous artificial grassland at Tianzhu Alpine Grassland Experimental station. A single factor experimental design was used to determine the nitrogen addition dose in the experiment site according to the nitrogen deposition distribution pattern in China, and five nitrogen addition levels of control N0 (no nitrogen), N1 (12 kg/hm2), N2 (24 kg/hm2), N3 (48 kg/hm2) and N4 (96 kg/hm2) were set, with four times per treatment. Fertilization was performed twice in early July and early August 2021, and rhizosphere and non-rhizosphere soil samples of each treatment were collected for determination in September. The results showed that the nitrogen application level had significant effects on the content of alkali-hydrolyzed nitrogen in rhizosphere soil and the soil bulk density in non-rhizosphere soil (p<0.01), and had significant effects on the content of organic matter and available phosphorus in rhizosphere soil (p<0.05). In rhizosphere soil, soil water content increased with the increase of nitrogen application level. Soil pH value decreased slowly and reached the lowest value under N4 treatment. Under N3 treatment, alkali-hydrolytic nitrogen, available phosphorus and available potassium in rhizosphere soil were significantly increased by 8.92%, 44.38% and 16.00% compared with control group (p<0.05). Soil organic matter content was also significantly higher than that in control group (p<0.05). In non-rhizosphere soil, with the increase of nitrogen application level, soil alkali-hydrolytic nitrogen and available phosphorus contents increased first and then decreased, and the peak value was reached under N3 treatment (p<0.05). Soil pH value increased first and then decreased. The content of soil organic matter reached the peak value at the level of N4 (p<0.05). Under the same nitrogen application level, the contents of water content, available phosphorus and available potassium in rhizosphere soil were lower than those in non-rhizosphere soil except N3 level. pH, organic matter content and alkali-hydrolyzed nitrogen content of rhizosphere soil were higher than those of non-rhizosphere soil. The comprehensive analysis of grey correlation degree showed that N3 treatment and N4 treatments had the greatest effects on physicochemical properties and available nutrients of rhizosphere and non-rhizosphere soil, respectively.

    参考文献
    相似文献
    引证文献
引用本文

高浩诚, 牧仁, 焦婷, 陈鑫, 马淑敏, 张霞.施氮对高寒垂穗披碱草草地根际、非根际土壤肥力的影响[J].水土保持学报,2023,37(6):276~282

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-27
  • 出版日期: 2023-12-28