文章摘要
王伟, 苏远逸, 李鹏, 时鹏, 赵宾华, 薛少博, 杨光.解冻期覆沙黄土坡面能量参数与径流产沙关系[J].水土保持学报,2021,35(1):56~64
解冻期覆沙黄土坡面能量参数与径流产沙关系
Relationship Between Energy Parameters of Sand-Covered Loess Slope and Runoff and Sediment Yield During Thawing Period
投稿时间:2020-07-26  
DOI:10.13870/j.cnki.stbcxb.2021.01.008
中文关键词: 黄土  土壤侵蚀  放水冲刷  径流产沙  能量参数
英文关键词: loess  soil erosion  meltwater flow  runoff and sediment yield  energy parameters
基金项目:国家自然科学基金项目(51779204);陕西省创新人才推进计划项目科技(水土资源环境演变与调控)创新团队(2018TD-037);陕西省水土保持和移民工作中心城镇水土保持技术集成项目(104-441120034)
作者单位E-mail
王伟1,2, 苏远逸1,2, 李鹏1,2, 时鹏1,2, 赵宾华1,2, 薛少博1,2, 杨光1,2 1. 旱区生态水文与灾害防治国家林业局重点实验室, 西安 710048

2. 省部共建西北旱区生态水利国家重点实验室(西安理工大学)
, 西安 710048 
lipeng74@163.com 
摘要点击次数: 66
全文下载次数: 58
中文摘要:
      为探究春季解冻期覆沙黄土坡面能量参数动态响应时空演化过程,在相同放水流量(1 L/min)条件下,采用2个土壤处理(未冻坡面,冻结坡面)和4个覆沙厚度(0,1,2,3 cm)进行室内模拟冷冻和放水冲刷试验,系统分析了径流流速(V)、径流功率(W)、单位径流功率(P)和径流动能(E)在不同土壤处理和不同覆沙厚度条件下的时空演化过程。结果表明:(1)不同处理下的径流流速随产流时间的延长总体呈下降趋势,随着距坡顶距离的增大总体呈增大趋势。未冻坡面和冻结坡面径流流速的均值在0.23~0.35,0.18~0.35 m/s变化。径流深的时空变化规律与径流流速相反,未冻坡面和冻结坡面的值分别在0.36~1.32,0.46~2.89 mm变化。(2)未冻坡面和冻结坡面径流功率的变化范围分别为0.22~0.82,0.29~1.13 N/(m·s)。不同处理下的单位径流功率随产流时间的延长总体呈下降趋势,未冻坡面和冻结坡面的单位径流功率的均值分别在0.047~0.072,0.037~0.072 m/s变化。未冻坡面的径流动能随着覆沙厚度的增加而增大,冻结坡面的径流动能随着时间的延长总体呈先增大后减小的趋势。在空间上,未冻坡面和冻结坡面的能量参数和距坡顶距离均可用线性函数表示(R2 > 0.71)。(3)产流率与径流流速和能量参数之间呈显著的线性关系(p<0.01),径流流速和单位径流功率可以对未冻坡面和冻结坡面在不同覆沙厚度条件下的产流过程进行描述。研究结果可为建立解冻期的覆沙黄土坡面侵蚀模型提供参考。
英文摘要:
      In order to explore the temporal and spatial evolution process of energy parameters dynamic response of sand covered loess slope in spring thawing period, two soil treatments (unfrozen slope and frozen slope) and four sand cover thicknesses (0, 1, 2 and 3 cm) were used under the same discharge (1 L/min). The temporal and spatial evolution process of runoff velocity (V), stream power (W), unit stream power (P), and runoff kinetic energy (E) under different soil treatments and different thickness of sediment cover were systematically analyzed. The results showed that: (1) The runoff velocity under different treatments decreased with the extension of runoff generation time, and increased with the increase of distance from the top of slope. The average runoff velocity of unfrozen slope and frozen slope varied from 0.23 to 0.35 m/s and from 0.18 to 0.35 m/s, respectively. The temporal and spatial variation of runoff depth was opposite to that of runoff velocity. The values of unfrozen slope and frozen slope varied from 0.36 to 1.32 mm and 0.46 to 2.89 mm, respectively. (2) The variation range of stream power of unfrozen slope and frozen slope was 0.22 ~ 0.82 and 0.29 ~ 1.13 N/(m·s), respectively. The average value of unit stream power of unfrozen slope and frozen slope varied from 0.047 to 0.072 m/s and 0.037 to 0.072 m/s, respectively. The runoff kinetic energy of unfrozen slope increased with the increase of sediment thickness, and the runoff kinetic energy of frozen slope increased at first and then decreased with the extension of time. In space, the energy parameters of unfrozen slope and frozen slope could be expressed by linear function (R2 > 0.71). (3) There was a significant linear relationship between runoff rate and runoff velocity and energy parameters (p <0.01). Runoff velocity and unit stream power could describe the runoff generation process of unfrozen slope and frozen slope under different sediment thickness. The results of this study can provide reference for the establishment of erosion model of sand covered loess slope in thawing period.
查看全文   查看/发表评论  下载PDF阅读器
关闭