基于DEM坡度图制图中坡度分级方法的比较研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P231.5

基金项目:

中国科学院资助项目


Comparison of Slope Classification Methods in Slope Mapping from DEMs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    坡度分级是所制作的坡度图具有科学性与实用性的重要前提,各种分级方法一直是坡度分级研究中的重点。将各种坡度分级方法分为一般主观分级法、临界坡度分级法与模式分级法3大类,并以黄土丘陵沟壑区为实验样区,以高精度5m分辨率的DEM为信息源,提取坡度数据层面。在此基础上,对不同分级方法的特点、适用性及制图效果等进行了比较分析。研究表明:一般主观分级法简单、灵活,但带有一定的主观性及随意性;临界坡度分级法能较好地满足用户的应用目的,但经常忽视了坡度图制图效果;而模式分级法能够较好地揭示地表的坡度组合规律。应根据应用目的、地面起伏特征等来选择合适的坡度分级方法,这样才能得到合理的坡度分级结果,更大程度地满足用户的应用目的。研究结果对指导正确、有效地制作与应用坡度图具有重要意义。

    Abstract:

    Slope classification is an important precondition for slope mapping.It divides slope classification methods into three kinds: commonly subjective classification methods,critical classification methods and mode classification methods.It takes a gully and hill area of loess plateau as the test area and regards DEMs of 5 m resolution as the information source in the experiment.Slope gradient layer can be created the first.Then more works is done to make a comprehensive comparison on the characteristics,applicability and mapping effect of different classification methods.Study shows that commonly subjective classification methods are simple and flexible,but classification results have some randomicity and subjectivity,and often depend on users' professional level and experience.Critical classification methods can satisfy users' application aims well,but mapping effect are often ignored.Mode classification methods may discover the rule of real relief.The three kinds of slope classification methods have different characteristics and applicability,we should choose proper classification methods based on application aims and characteristics of slope data.The result in this research should be of significant values in directing correct and effective applications.

    参考文献
    相似文献
    引证文献
引用本文

汤国安,宋佳.基于DEM坡度图制图中坡度分级方法的比较研究[J].水土保持学报,2006,(2):157~160,192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-06-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码