根系互作对苹果生长及\(^{15}\text{N}\)—尿素吸收、利用和土壤残留的影响
彭 玲，刘晓霞，何 流，徐新翔，葛顺峰，姜远茂
（山东农业大学园艺科学与工程学院，作物生物学国家重点实验室，山东 泰安 271018）

摘要：在苹果/白三叶（M1）和苹果/黑麦草（M2）复合系统中，设置根系分隔（完全分隔 N1、尼龙网分隔 N2、不分离 N3），采用\(^{15}\text{N}\)同位素示踪技术，研究了根系互作对苹果生长及\(^{15}\text{N}\)吸收、利用、损失和土壤残留的影响。结果表明，苹果新梢旺长期，在 M1 中苹果生长指标均 N3＞N2＞N1，在 M2 中趋势相反。与 N1 处理相比，M1 中 N2 和 N3 处理苹果\(^{15}\text{N}\) 吸收率分别为增加了 11.91% 和 18.96%，M2 中分别降低了 5.76% 和 8.99%，苹果全氮量和\(^{15}\text{N}\)吸收率趋势相同。苹果根区土壤\(^{15}\text{N}\) 丰度，总氮含量和\(^{15}\text{N}\)残留率均以 N1 处理最低，N3 处理最低；苹果落叶期，两种复合体系中均以 N3 处理的苹果各生长指标最大，N1 处理最低。在 M1 中 N2 和 N3 处理苹果根区土壤\(^{15}\text{N}\) 丰度分别比 N1 处理增加了 22.33% 和 34.15%，在 M2 中增幅分别为 13.73% 和 21.44%，土壤总氮含量呈相反趋势。M1 和 M2 中苹果全氮量、\(^{15}\text{N}\) 吸收率和各器官 Ndiff 值差异显著，N3＞N2＞N1，与 N1 处理相比，M1 中 N2 和 N3 处理下苹果\(^{15}\text{N}\) 吸收率分别增加了 19.11% 和 42.66%，而\(^{15}\text{N}\) 损失率分别降低了 13.55% 和 27.12%，在 M2 中趋势相同。苹果生长前期，黑麦草和苹果以负相竞争为主，白三叶对其促进效果亦不显著，而至苹果生长后期，两种牧草和苹果根系互作降低了苹果根区氮损失，促进了苹果的氮素吸收利用和营养生长，且以间作白三叶效果最好。

关键词：苹果；生草栽培；根系互作；\(^{15}\text{N}\)—尿素；根系分隔

中国分类号：S661.1；S344.2 文献标识码：A 文章编号：1009-2242（2018）04-0353-08

Effects of Root Interaction on the Apple Tree Growth, and Absorption, Utilization and Soil Residue of \(^{15}\text{N}\)—urea

PENG Ling, LIU Xiaoxia, HE Liu, XU Xinxiang, GE Shunfeng, JIANG Yuanmao

(State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018)

Abstract: A pot experiment was carried out in apple- *Trifolium repens* L. (M1) and apple-*Lolium perenne* L. (M2) intercropping system to investigate the effects of root interaction on the growth and \(^{15}\text{N}\)—urea absorption, utilization, loss and residue of apple trees under different root barrier method (N1, N2 and N3 were equivalent to solid barrier, mesh barrier and no barrier, respectively), using the \(^{15}\text{N}\)—labeled tracer technique. Results showed that, at new shoot growing stage, the growth index of apple trees displayed an order of N3＞N2＞N1 in M1 intercropping system, while the opposite tendency was observed in M2 intercropping system. Compared with N1 treatment, the \(^{15}\text{N}\) utilization rate of apple trees increased by 11.91% and 18.96% in M1 intercropping system under N2 and N3 treatment, but decreased by 5.76% and 8.99% in M2 intercropping system. The plant total N content and \(^{15}\text{N}\) absorption amount showed the same tendency. The effect on \(^{15}\text{N}\) abundance and total N content in the soil of apple trees were the most significant in N1 treatment, and the least in N3 treatment. At leaf fall period, the growth index of apple trees was obviously the highest in N3 treatment, and the lowest was found in N1 treatment. In comparison with N1 treatment, the soil \(^{15}\text{N}\) abundance of apple trees under N2 and N3 treatment increased by 22.33% and 34.15% in M1 intercropping system, and the rate of increase in M2 intercropping system were 13.73% and 21.44%, the total N content in the soil of apple trees showed the same tendency. There were significant
作为优良的果园土壤管理模式，生草栽培是多年生木本植物和牧草在空间上有机结合构建形成的多物种、多层次和多时序的复合生态系统，具有良好的生态效益和经济效益。在多种共存的系统中，各组分之间存在直接或间接的相互作用，主要表现为植物对资源的竞争和互补利用。研究发现，间作体系中存在明显的增产和养分的高效利用机制。黑麦草和玉米间作，黑麦草对土壤有机物的吸收效率提高，从而降低了氮素的淋溶损失，间作玉米产量也维持在较高水平。小麦/蚕豆、小麦/玉米等间作模式中，氮素高含量显著促进氮低效作物对氮的吸收，从而改善了整个体系的氮营养状况。玉米和大豆间作影响了作物根系的生长，促进了玉米和大豆对磷的吸收，积累和利用。在果园生草复合系统中，牧草组分和果树组分存在负相竞争的同时，也对果树组分发挥着营养的促进作用，它们之间营养竞争和促进作用的机制是什么？因此，系统分析复合系统中物种间的相互作用和动态变化对各组分的影响，有助于进一步揭示复合系统中不同组分竞争/协同的形成机制和相应的生态过程，从而优化间作体系中养分资源的调控，减少化肥投入，降低环境风险。

研究发现，不同物种地下部根系竞争、互补及其动态变化对土壤水分、养分的吸收竞争起着重要作用，甚至在特定条件下，种间根系相互作用对作物生长和养分吸收的影响远大于地上部。根系隔位技术是研究复合系统中不同物种对养分竞争和促进作用的强弱，同时评价根系土间养分分配差异有有效方法。过去引用根系隔位技术在不同农作物间作体系中进行了大量报道。但在果园生草模式中对各组分营养竞争与促进的互作机理的鲜有研究。白三叶草和黑麦草分别为豆科和禾本科高产优质牧草，与农作物及林木间，套、复种的方式日益增多，尤其在果园有大面积栽培和利用。本研究通过设置苹果/白三叶草和苹果/黑麦草间作栽培试验，采用^{15}N示踪及根系隔位技术，比较了同作两种牧草在苹果不同物候期对苹果植株生长和氮素吸收利用的差异，以期为进一步明确果园生草复合系统中氮素间竞争、促进和高效吸收利用的作用机制，为优化调控果树和牧草间氮素营养吸收和利用，充分发挥间作优势，减少农药化肥投入提供理论依据，从而加快果园生草技术的推广与应用。

1 材料与方法

1.1 试验材料与设计

试验于2017年3月9日在山东农业大学园艺试验站防雨棚内进行。供试土壤为砂质壤土，土壤有机质含量5.43 g/kg，全氮含量0.43 g/kg，速效磷含量26.13 mg/kg、速效钾含量238.12 mg/kg。供试苹果幼苗为正常管理的两年生盆栽红富士苹果(Malus domestica Borkh. cv. Red Fuji)和平邑甜茶(Malus hupenensis Rhd.)幼苗，平均株高47 cm，茎粗3.6 mm。供试生草草种为白三叶(Tritium repens L.)和黑麦草(Lolium perenne L.)。

采用根系隔位盆栽试验，3×2二因素随机区组设计。盆高43 cm，底部直径32 cm，将盆从中间切开，用聚氯乙烯粘合剂将尼龙网或塑料膜夹在中间，并用密封胶涂抹使其不漏水，把盆分为隔2室。土壤风干过2 mm筛后每室装土7.5 kg，每盆15 kg。因素一为根系隔位方式，N1、塑料膜隔位（完全隔位）、N2、尼龙网隔位、根系未被隔开，但根系间有养分和水分的交换；N3，根系不分隔、水、肥、根均可通过。因素二为栽培方式，M1，苹果/白三叶间作；M2，苹果/黑麦草间作。苹果、白三叶和黑麦草同时在2017年3月12日栽植，播种，每盆栽植一株苹果幼苗。施肥处理于2017年3月20日，萌芽期，各长期生长期参照苹果大苗进行，增处理氮、磷、钾肥为尿素,过磷酸钙和硫酸钾；纯氮、P_{2}O_{5}、K_{2}O 各 100 kg/ha。同时每盆2室各土施0.4g^{15}N尿素（上海化工研究院生
产，丰度为 10.25%，每个处理重复 6 次，各处理每隔 7 天浇 1 次水，确保两个作物区的土壤湿度相同，且在条件适宜范围内进行常规管理，各处理生长条件和其他栽培管理保持一致。

分别于 5 月 13 日（新梢旺长期）和 9 月 16 日（落叶期）测定苹果株高和茎基，并将苹果整株进行破坏性取样，解剖为根、茎、叶。同时将苹果根区土壤取出，混匀后，按四分之一法则取 20 g 土，自然风干、研磨，过 100 目筛，装袋待测。

1.2 测定指标与方法

1.2.1 根系解剖样品测定方法 苹果植株样品按清水→洗涤剂→清水→1%盐酸→3次洗去处水顺序洗净后，105℃杀青 30 min，随后 80℃烘干至恒重，电磨粉碎后过 60目筛，混匀后装袋备用。生物量以干物质计。样品全氮采用凯氏定氮法测定。15N丰度在中国农业科学院原子能研究所以采用MAT-251质谱仪（美国菲尼根公司）测定，土壤容重采用转筒法测定。

1.2.2 根系活力和根系形态指标的测定 根系经清水冲洗后用透射扫描仪（Epson Perfection V750）对样品进行扫描，获取苹果植株单株根系图像，再利用 WinRHIZO（Regent Instruments Inc., 加拿大）根系分析软件进行根系长度、根系表面积和根系体积分析，并计算每个样品根系长度。根系活力采用氟化三苯基四氮唑（TTC）还原法测定。以单位鲜质量根系的还原 TTC 量表示。

1.3 计算与数据处理

Ndff（植株器官中吸收分配到的15N 量对器官全氮量的贡献率，%）=[（样品中15N 丰度-15N 自然丰度）/（肥料中15N 丰度-15N 自然丰度）]×100%；氮肥利用率=[（Ndff×器官全氮量（g））/施肥量（g）]×100%；土壤氮量（kg）=土壤体积（m³）×土壤容重（kg/m³）；土壤全氮量（g）=土壤总量（kg）×全氮含量（%）；氮肥残留率=Ndff×土壤全氮量/施氮量（g）×100%；氮肥损失率=100%-氮肥利用－土壤氮肥残留率。

本试验所有数据均采用 Excel 2003 进行统计分析和图表绘制，并利用 DPS 7.05 统计软件进行方差分析和 LSD 多重比较分析。

2 结果与分析

2.1 根系分隔对不同复合体系下苹果植株生长的影响

从表 1 可以看出，在 M1 复合体系中，新梢旺长期苹果株高、茎基和总干重均以 N3 处理最大，其次为 N2 处理，N1 处理最小，但各处理间差异未达显著水平（P>0.05）；在 M2 复合体系中，苹果各生长指标为 N1>N2>N3，且 N1 和 N2 处理下苹果总干重显著高于 N3 处理。N1 和 N2 处理下，间作两种牧草对苹果生长的影响差异较小，而在 N3 处理下，M1 复合体系中苹果株高、茎基和总干重比例比 M2 复合体系中高 16.93%、4.61% 和 13.94%。

在 M1 复合体系中，与 N1 处理相比，苹果落叶期 N2 和 N3 处理下苹果总干重分别增加了 12.66% 和 20.36%，M2 复合体系中其增幅分别为 8.33% 和 13.92%。两种复合体系中苹果株高和茎基也呈相同趋势，为 N3>N2>N1，且各处理间差异显着水平（P<0.05）。说明两种间作相互作用促进了苹果植株的生长，且以 N3 处理的促进作用最为明显。N2 和 N3 处理下，M1 复合体系中苹果株高、茎基和总干重均显著高于 M2 复合体系，表明三叶草对苹果生长的促进效果优于黑麦草。而在 N1 处理下苹果和牧草根系无相互作用，间作两种牧草对苹果生长的影响较小。

<table>
<thead>
<tr>
<th>表 1 根系分隔和间作牧草对苹果植株株高、茎基和总干重的影响</th>
</tr>
</thead>
<tbody>
<tr>
<td>取样时期</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>新梢旺长期</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>落叶期</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

注：同一时期同一字母表示差异不达 0.05 显著水平，两种复合体系下不同间作条件下字母表示差异达 0.05 显著水平。下同。

2.2 根系分隔对不同复合体系下苹果植株根系形态的影响

在间作复合系统中，植物根系可通过调节其形态和生理可塑性来适应土壤环境的变化。从表 2 可以看出，新梢旺长期，在 M1 复合体系中，N3 和 N2 处理下苹果根长长度分别是 N1 处理的 1.19、1.05 倍，根长和根表面积趋势相同；在 M2 复合体系中，根长、根长密度和根表面积表现分别为 N1>N2>N3。在 N2 处理下，M1 复合体系中苹果根长长度显著高于 M2 复合体系，苹果根长和根表面积在两种复合体系中无显著差异（P>0.05）。在 N3 处理下，M1 复合体系中苹果根长，根长密度和根表面积分别为 M2 复合体系的 1.03、1.19、0.08 倍。表明此时黑麦草和苹果根系互作对苹果根系的生长表现出一定的抑制作用。
苹果落叶期，M1 复合体系中 N2 和 N3 处理苹果根长密度分别比 N1 处理增加了 19.42% 和 41.99%，在 M2 复合体系其增幅分别为 11.61% 和 26.66%。两种复合体系中苹果根长和根表面积趋势相同。表明此时苹果和牧草生长，苹果根系表现出明显的形态可塑性，通过扩大根系吸收空间，促进根系生长。不同根系分隔方式下间作不同牧草对苹果根系生长的影响差异较大。N3 处理下，M1 复合体系中苹果根长、根长密度和根表面积分别是 M2 复合体系的 1.05, 1.09, 1.06 倍，N2 处理趋势相同。而在 N1 处理中，间作两种牧草苹果根系形态指标差异不显著 (P > 0.05)。

表 2 根系分隔和间作牧草对苹果根系长、根长密度和根表面积的影响

<table>
<thead>
<tr>
<th>取样时期</th>
<th>处理</th>
<th>根长/cm</th>
<th>根长密度/(cm·cm⁻²)</th>
<th>根表面积/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>M2</td>
<td>M1</td>
</tr>
<tr>
<td>新梢旺长期</td>
<td>N1</td>
<td>1116.32(b)</td>
<td>1126.13(a)</td>
<td>87.13(b)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>1131.69(ab)</td>
<td>1122.01(a)</td>
<td>97.92(a)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>1140.35(a)</td>
<td>1108.82(b)</td>
<td>103.29(a)</td>
</tr>
<tr>
<td>落叶期</td>
<td>N1</td>
<td>1609.60(a)</td>
<td>1599.14(ab)</td>
<td>120.49(b)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>1866.60(b)</td>
<td>1729.48(b)</td>
<td>143.89(b)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>1986.26(a)</td>
<td>1896.75(b)</td>
<td>171.08(a)</td>
</tr>
</tbody>
</table>

2.3 根系分隔对不同复合体系下苹果根系活力的影响

根系活力大小直接影响植物矿物质元素的吸收和地上部的生长。一般情况下，根系活力越高，植株吸收养分的能力越强。从图 1 可以看出，新梢旺长期，在 M1 复合体系中，和 N3 处理相比，N2 和 N1 处理下苹果根系活力分别降低了 8.86% 和 20.92%，N2 和 N3 处理间差异不显著 (P > 0.05)，而在 M2 复合体系中，N2 和 N1 处理苹果根系活力无显著差异 (P > 0.05)，但比 N3 处理分别增加了 12.12% 和 9.49%。N2 和 N3 处理下，M1 复合体系中苹果根系活力均高于 M2 复合体系，而 N1 处理下间作两种牧草对苹果根系活力的影响无显著差异 (P > 0.05)。表明此时苹果和牧草根系相互作用越大，白三叶越可提高苹果的根系活力，而麦草则越抑制其根系活力。苹果落叶期，间作两种牧草对苹果根系活力的影响规律一致，均 N3 > N2 > N1，各处理间差异显著 (P < 0.05)。在 N2 和 N3 两种根系分隔方式下，M1 复合体系中苹果根系活力分别是 M2 复合体系的 1.15, 1.06 倍，但在无根系相互作用的 N1 处理下无显著差异 (P > 0.05)。表明随时间推移，牧草通过和苹果根系互作可增大苹果根系活力，且白三叶对苹果根系活力的提高效果优于麦草。

2.4 根系分隔对不同复合体系下苹果植株各器官 Ndff 的影响

植株器官从肥料中吸收分配到的¹⁵N 量对器官全氮量的贡献率(Ndff)反映了植株器官对肥料¹⁵N 的吸收征调能力。由表 3 可知，新梢旺长期，以根系的 Ndff 值最高，茎和叶片 Ndff 值均较低。表明此时根系对¹⁵N 的吸收征调能力最强，而地上部器官建造对肥料氮的需求则较少。在 M1 复合体系中，根系和茎部的 Ndff 值均为 N3 > N2 > N1，但茎部 Ndff 值在各根系分隔方式下差异不显著 (P > 0.05)。在 M2 复合体系中，则 N1 > N2 > N3。两种复合体系下 3 种根系分隔方式下叶片 Ndff 值均无显著差异 (P > 0.05)。在 N2 和 N3 处理下，M1 复合体系中根系 Ndff 值分别比 M2 复合体系中高 17.81% 和 27.54%，茎部和叶片 Ndff 值在两种复合体系中差异未达显著水平 (P > 0.05)。

苹果落叶期，苹果各器官特别是叶片的 Ndff 值显著增大，且各处理下 Ndff 值均为叶 > 根 > 茎。两种复合体系下不同根系分隔方式对苹果各器官 Ndff 值影响规律一致，以 N3 处理最高，N2 处理次之，N1 处理最低，说明根系相互作用提高了苹果各根系对肥料氮的吸收征调能力，促进了对肥料氮的吸收利用，且 N3 处理效果最为明显。在 M1 复合体系中，N2 和 N3 处理下苹果根系和茎部 Ndff 值均显著高于 M2 复合体系，其中根系增幅分别为 9.35% 和 12.05%，茎部增幅分别为 10.10% 和 13.45%。对叶片，N3 处理下 M1 复合体系显著高于 M2 间作体系，在 N2 处理下两种复合体系中差异不显著 (P > 0.05)。而对无根系相互作用的 N1 处理，两种复合体系中苹果各器官 Ndff 值均无显著差异 (P > 0.05)。

2.5 根系分隔对不同复合体系下苹果植株全氮量及¹⁵N－尿素吸收、利用的影响

从表 4 可以看出，新梢旺长期，在 M1 复合体系中，
均以 N3 处理的苹果全氮量、^{15}N 吸收量和^{14}N 利用率最大，分别为 0.49 g、13.02 mg 和 7.09%，其次为 N2 处理，N1 处理最低，且^{15}N 吸收量和^{14}N 利用率在各根系分隔处理间差异显著（P<0.05）。在 M2 复合体系中，苹果全氮量、^{15}N 吸收量和^{14}N 利用率则均为 N1>N2>N3。但 N2 和 N3 处理间差异不显著（P>0.05）。N2 和 N3 处理下，M1 复合体系中苹果全氮量、^{15}N 吸收量和^{14}N 利用率均显著高于 M2 复合体系。

表 3 根系分隔和间作牧草对苹果植株各器官 Ndfa 的影响

<table>
<thead>
<tr>
<th>取样时期</th>
<th>处理</th>
<th>根</th>
<th></th>
<th>茎</th>
<th></th>
<th>叶</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>M2</td>
<td>M1</td>
<td>M2</td>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>新梢旺长期</td>
<td>N1</td>
<td>0.74(b)</td>
<td>0.77(a)</td>
<td>0.46(ab)</td>
<td>0.47(a)</td>
<td>0.43(a)</td>
<td>0.40(a)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>0.86(a)</td>
<td>0.73(b)</td>
<td>0.49(a)</td>
<td>0.46(ab)</td>
<td>0.46(a)</td>
<td>0.43(a)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>0.88(a)</td>
<td>0.69(b)</td>
<td>0.51(a)</td>
<td>0.44(ab)</td>
<td>0.47(a)</td>
<td>0.43(ab)</td>
</tr>
<tr>
<td>落叶期</td>
<td>N1</td>
<td>1.82(a)</td>
<td>1.79(a)</td>
<td>1.56(c)</td>
<td>1.52(c)</td>
<td>2.49(a)</td>
<td>2.47(a)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>2.34(a)</td>
<td>2.14(b)</td>
<td>2.29(b)</td>
<td>2.08(b)</td>
<td>3.15(b)</td>
<td>2.89(ab)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>2.79(a)</td>
<td>2.49(b)</td>
<td>2.53(a)</td>
<td>2.23(b)</td>
<td>3.50(a)</td>
<td>3.23(a)</td>
</tr>
</tbody>
</table>

苹果落叶期，两种复合体系中苹果总氮量以 N3 处理最高，N1 处理最低。与 N1 处理相比，在 M1 复合体系中，N2 和 N3 处理下苹果^{15}N 吸收量分别增加了 21.86% 和 38.39%。M2 复合体系中其增幅分别为 12.69% 和 31.49%，^{15}N 利用率趋势相同。N1 处理下，两种复合体系下苹果对氮素的吸收利用无显著差异（P>0.05），而在 N2 和 N3 处理下，其在 M1 复合体系中均显著高于 M2 复合体系。表明根系相互作用在增加苹果全氮量和^{15}N 吸收量同时，提高了苹果^{15}N 利用率，且根系完全相互作用的效果显著大于部分根系相互作用，间作自三叶其效果优于黑麦草。

表 4 根系分隔和间作牧草对苹果植株总氮量、^{15}N 吸收量和^{14}N 利用率的影响

<table>
<thead>
<tr>
<th>取样时期</th>
<th>处理</th>
<th>全氮量/g</th>
<th>单株^{15}N 吸收量/mg</th>
<th>^{14}N 利用率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>M2</td>
<td>M1</td>
</tr>
<tr>
<td>新梢旺长期</td>
<td>N1</td>
<td>0.37(b)</td>
<td>0.38(a)</td>
<td>11.56(c)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>0.44(a)</td>
<td>0.36(a)</td>
<td>12.19(b)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>0.49(a)</td>
<td>0.33(b)</td>
<td>13.02(b)</td>
</tr>
<tr>
<td>落叶期</td>
<td>N1</td>
<td>0.63(c)</td>
<td>0.60(a)</td>
<td>17.61(c)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>0.80(a)</td>
<td>0.74(b)</td>
<td>21.46(b)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>0.94(a)</td>
<td>0.83(b)</td>
<td>24.37(a)</td>
</tr>
</tbody>
</table>

2.6 根系分隔对不同复合体系下苹果根区土壤中^{15}N% 丰度和总 N 含量的影响

从图 2 可以看出，新梢旺长期，两种复合体系中苹果根区土壤^{15}N% 丰度和总 N 含量均为 N1>N2>N3。但在 M1 复合体系中，3 种不同体系分隔处理间差异不显著（P>0.05），在 M2 复合体系中 N1、N2 和 N3 处理下其土壤^{15}N% 丰度差异均达显著水平（P<0.05）。与新梢旺长期规律相反，苹果落叶期，两种复合体系下，苹果根区土壤^{15}N% 丰度为 N3>N2>N1，且各根系分隔处理间差异显著（P<0.05）。M1 复合体系中，N2 和 N3 处理下苹果根区土壤总氮含量分别是 N1 处理的 1.11 和 1.23 倍，M2 复合体系中分别为 1.09 和 1.14 倍。进一步对比两种复合体系的差异可知，M1 复合体系中 N3 和 N2 处理下苹果根区土壤^{15}N% 丰度显著高于 M2 复合体系，在 N1 处理中无显著差异（P>0.05），土壤总氮含量也呈相同趋势。

![图 2 根系分隔和间作牧草对苹果根区土壤中^{15}N%丰度和总 N 含量的影响](attachment:图2.png)
2.7 根系分隔对不同复合体系下苹果根区土壤15N残留和损失的影响

从表5可以看出，新梢旺长期，施入苹果根区土壤中的肥料氮主要以残留的形式累积在土壤中。两种复合体系中，苹果根区土壤15N残留量和15N残留率均以N1处理最高，其次为N2处理，N3处理最低。但在M1复合体系中，N1、N2和N3处理间差异不显著（\(P>0.05\)），在M2复合体系中差异则显著（\(P<0.05\)）。苹果根区15N损失率则为N3>N2>N1，在M1复合体系中3种根系分隔处理间差异不显著（\(P>0.05\)）。在M2复合体系中N2和N3处理显著高于N1处理。在N2和N3处理下，M1复合体系中苹果根区土壤15N残留量和15N残留率显著高于M2复合体系，而苹果根区15N损失率与之呈相反趋势。

苹果叶期，施入苹果根区土壤中的肥料氮的损失率大于残留率，且两种复合体系中不同根系分隔方式对苹果根区土壤15N残留量和15N残留率影响规律一致。M1和M2复合体系中苹果根区土壤15N残留量均以N3处理最多，相应的分别为N1处理的1.44和1.34倍，其次为N2处理，苹果根区土壤15N残留率趋势相同。与15N残留量和15N残留率趋势相反，M1复合体系中N2和N3处理下苹果根区土壤15N损失率分别比N1处理低13.55%和27.12%，在M2复合体系中则分别降低了6.82%和17.21%。N2和N3处理下，M1复合体系苹果根区土壤15N残留量和15N残留率显著高于M2复合体系，15N损失率则呈相反趋势。说明随时间推移，白三叶、黑麦草和根系相互作用在促进苹果根系对肥料氮的吸收利用的同时，有利于土壤肥力的保持，且与白三叶间作效果优于黑麦草。

表5 根系分隔和间作对苹果根区土壤15N残留量、15N残留率和15N损失率的影响

<table>
<thead>
<tr>
<th>取样时期</th>
<th>处理</th>
<th>(15N)残留量/mg</th>
<th>(15N)残留率/%</th>
<th>(15N)损失率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>M2</td>
<td>M1</td>
</tr>
<tr>
<td>新梢旺长期</td>
<td>N1</td>
<td>249, 34(a)(a)</td>
<td>253, 37(a)(a)</td>
<td>65, 46(a)(a)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>236, 36(a)(b)</td>
<td>220, 71(b)(b)</td>
<td>61, 89(a)(b)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>223, 89(b)(b)</td>
<td>209, 61(b)(b)</td>
<td>58, 76(b)(b)</td>
</tr>
<tr>
<td>落叶期</td>
<td>N1</td>
<td>103, 39(c)(c)</td>
<td>97, 11(c)(c)</td>
<td>28, 82(c)(c)</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>128, 04(b)(b)</td>
<td>117, 12(b)(b)</td>
<td>34, 43(b)(b)</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>149, 31(a)(a)</td>
<td>130, 30(a)(a)</td>
<td>38, 26(a)(a)</td>
</tr>
</tbody>
</table>

3 讨论

果园生草复合系统中，牧草和果树组分竞争和促进作用并存。苹果和牧草共同生长阶段，从苹果萌芽期到新梢旺长期，苹果氮素需求的主要来源是贮藏氮，对土壤及肥料氮的需求较少，此期大量施氮超过树体实际需求量不仅造成氮素资源的浪费，且不利于当年的开花坐果[11]。而此期正值牧草的生长盛期，对土壤养分的吸收和光的利用都达到了峰值。本试验条件下，苹果新梢旺长期两种牧草对苹果生长和养分吸收的影响效果不同。在苹果和黑麦草复合体系中，与根系完全分隔相比，尼龙网和不分隔处理下苹果根系nd\textsubscript{f}f值分别降低了5.48%和11.59%，苹果根区土壤15N丰度和植株15N吸收量也呈降低的趋势，表明此时根系相互作用下，黑麦草竞争吸收了部分苹果根区的氮素养分，对苹果以负相竞争为主，且竞争强度随根系相互作用的增大而提高，因而根系不分隔处理下苹果株高和总干重均低于根系完全分隔处理。而在白三叶和苹果复合体系中，根系尼龙网和不分隔处理下苹果15N吸收量分别比根系完全分隔处理增加了5.45%和12.63%，苹果全氮量和15N利用率趋势相同，苹果根区土壤15N丰度和全氮含量在各根系分隔处理间差异不显著。说明白三叶和苹果根系相互作用越小，越体现出对苹果养分吸收的促进作用。但此时白三叶对苹果营养生长的促进作用较小，苹果株高、茎粗和总干重在根系分隔处理间差异均不显著。

农林复合系统中树木和根系组分的分布特征对整个系统的持续性发展具有重要的影响[12]。苹果新梢旺长期，苹果和白三叶复合体系中，根系尼龙网和不分隔处理下苹果根长密度显著大于根系完全分隔，在苹果和黑麦草复合系统中与之呈相反趋势。究其原因，可能与此为牧草根系快速生长期，相对于白三叶，黑麦草根系较发达，根系生物量消减系数较大，在对土壤养分的竞争中暂时占据优势。而此时根系互作越在一定程度上越不利于苹果根系扩张。而白三叶根系消减系数较小，与果树根系呈镶嵌分布，不会抑制苹果根系生长[13]。一般情况下，果树根系的发生高峰与枝叶的生长高峰互错，这是地上部和地部争夺有机养分的结果[14]。新梢旺长期，新定植的苹果幼树根系发生量较小，此时两种牧草对苹果根系生长所体现出的互作效果也较小，因而两种复合体系中不同根系分隔方式下苹果根长和根表面积间的
差异不显著。

进一步比较两种牧草对苹果氮素营养促进作用的差异可知，白三叶为豆科牧草，本身具有固氮作用，研究表明豆科可通过根系分泌相应数量的硫化合物[23]，这些化合物可能以氨基酸、细胞溶解物、脱落物及\(\text{NH}_4^+\), \(\text{NO}_3^-\)等形态在根际沉积[24-25]。在本试验中，根系尼龙网特别的不分离处理下苹果竞争吸收形成苹果和白三叶土壤中氮素浓度梯度，可能会进一步促进这些硫化合物向苹果根区迁移，白三叶根区土壤有效氮随其降低，从而促进了白三叶更多的固定空气氮，进一步减少了对土壤氮素的消耗。加之白三叶对土壤肥力的保持作用，使得苹果和白三叶复合体体系中根系不分离和尼龙网分离下苹果根区土壤中[15]N丰度和总氮含量均高于苹果和黑麦草复合体体系。另外，白三叶对苹果根系活力和根系生长的促进作用也优于黑麦草，因而苹果和白三叶根系互作最有利于苹果氮素吸收和营养生长。黑麦草为禾本科牧草，虽然白三叶和杂草通过间隙互惠实现氮素的高效利用，但其与苹果根系互作可能也存在氮素的转移作用，刺激或诱导了苹果对氮的竞争吸收[26]，且黑麦草在生长后期对土壤养分的吸附和解吸作用在一定程度上也减弱了土壤氮素的损失，间接保障了苹果对氮素的需求，从而促进了苹果氮素吸收，改善了苹果的营养生长。

4 结 论

吸收量趋势相同。表明此时根系相互作用下黑麦草和苹果以负相竞争为主，对苹果氮素吸收和营养生长表现出一定的抑制作用，自三叶则对其表现出一定的促进作用，但其促进效果不显著。

（2）随时间的延长，至苹果落叶期，两种牧草和苹果互作，一方面拓展了苹果根系的空间生态位宽度，提高了苹果根系活力，促进了苹果根系的生长；另一方面，两种牧草和苹果在对土壤养分吸收高峰期上的互补产生了时间生态位的互补，牧草对土壤养分的吸附与解吸特性又降低了苹果根区土壤氮素的损失，保障了苹果需氮期氮素的稳定、充足供应，从而促进了苹果植株对氮素的吸收利用，进一步促进了其营养生长，且根系相互作用越大，其促进效果越显著，并以间作自三叶效果为最佳。

参考文献：