密植减氮对三熟区不同肥力红壤稻田作物
产量和耕层氮素的影响

王芳东1,2, 吕伟生3, 符明金4, 郭熙1, 孙小香1, 赵小敏1
(1.江西农业大学江西省鄱阳湖流域农业资源与生态重点实验室, 南昌 330045; 2.江西省农业科学院基地管理中心, 南昌 330200; 3.江西省红壤研究所, 南昌 330046; 4.抚州市农业农村局, 江西 抚州 344100)

摘要: 2017—2018 年在长江中游三熟制区（江西吉安）开展油菜—早稻—晚稻 3 季作物田间试验, 初步探
究了油菜增密度还田下密植减氮对不同肥力红壤稻田作物产量和耕层氮素的影响, 为三熟制区资源节约
型与环境友好型生产技术发展提供参考。结果表明: 在油菜增密度还田条件下, 提高土壤肥力和增加
种植密度能够促进油菜及早季水稻群体生长, 显著提高作物产量, 增密 30%, 减氮 20%的密植减氮处理,
可以满足油菜 3 季作物生育期内的氮素需求, 保证作物正常生长, 并明显提高氮肥利用率。总体而言,
密植减氮栽培能够达到甚至略高于常规栽培的产量水平, 尤其是在高肥力条件下。短期内的密植减氮栽
培不会造成耕层土壤全氮含量及库容量显著降低, 但在低肥力条件下显著降低了耕层的碱解氮含量及
库容量。

关键词: 油菜增密度; 种植还田; 密植减氮; 土壤肥力; 产量; 氮素库容

Effects of High-density and Low-nitrogen on Crop Yield and Soil Nitrogen Storage in Plough Layer of Red Paddy
Field with Different Soil Fertility in Triple-cropping Area

WANG Fangdong1,2, LÜ Weisheng3, FU Mingjin4, GUO Xi1, SUN Xiaoxiang1, ZHAO Xiaomin1
(1. Jiangxi Key Laboratory of Agricultural Resources and Ecology of Poyang Lake Basin, Jiangxi Agricultural University, Nanchang 330045; 2. Base Management Center of Jiangxi Academy of Agricultural Sciences, Nanchang 330200; 3. Jiangxi Institute of Red Soil, Nanchang 330046; 4. Bureau of Agriculture and Rural Affairs of Fuzhou, Fuzhou, Jiangxi 344100)

Abstract: In 2017—2018, a field experiment of rape-early rice-late rice in red paddy field was conducted in tri-
ple-cropping areas (Jinxian of Jiangxi) in the middle reaches of the Yangtze River, to study the effects of
higher planting density and lower nitrogen rate with straw returning on crop yield and soil nitrogen storage of
red soil with different fertility, providing a reference for the development of resource conservation and envi-
ronment-friendly production technology in the triple cropping system area. The results showed that under the
condition of returning three crop straws to the field, increasing of soil fertility and planting density could sig-
ificantly promote the increasing of growth and yield of both rice and rapeseed. The treatment of 30% higher
planting density with 20% lower nitrogen application rate could meet the nitrogen demand of the three crops
growth, ensure the normal growth of the crops, and significantly improve the nitrogen utilization rate. In
general, the crops yield of the treatment of high planting density combined with low nitrogen rate could reach
or even slightly higher than that of the conventional cultivation, especially under the condition of high ferti-
licity. In the short-term, high planting density combined with low nitrogen rate cultivation did not significantly
reduce the total content and storage capacity of both total nitrogen and alkali nitrogen in plough layer soil.
but significantly reduced the alkali nitrogen content and the storage capacity of the plow layer soil under the condition of low fertility.

Keywords: oilseed rape; rice-rape; straw returning to field; cultivation with high planting density and low nitrogen rate; soil fertility; grain yield; nitrogen storage capacity

红壤是我国南方分布最广的土壤类型，基本涵盖长江流域冬油菜和水稻主产区。其中江西既是典型的红壤分布区，也是油菜—双季稻三熟制轮作的优势生产区，对保障国家粮油安全发挥了重要作用。红壤由于其复杂而特殊的发育和形成过程，肥力水平总体偏低，而传统的三熟制模式化肥用量较高，作物带走的盐基离子较多，进一步加剧了红壤稻田土壤质量下降和作物增产乏力。近年来，随着农业机械化的发展和禁烧秸秆政策的实行，秸秆切碎直接全田还田已成趋势。而通过秸秆还田，可优化土壤结构，归还土壤养分和增强微生物活性。水稻—三熟制秸秆还田量大，充分利用秸秆的培肥节肥效果应对缓解集约化种植导致的不利影响具有重要意义。

合理施用氮肥是提高水稻、油菜等粮油作物产量和效益的重要措施。但在秸秆总量还田条件下，农户生产习惯氮施用量并未发生改变，更有甚者通过增加基肥氮用量来应对秸秆腐解时微生物与作物争氮带来的不利影响。盲目地过量施氮导致近半数的氮肥以氨挥发、径流、淋溶及反硝化等途径损失水稻田外，造成严重的氮污染。减少氮肥投入是从源头上控制氮污染的关键措施，但仍可能降低耕地氮素库容。常规规模化施用量还可能导致作物减产。

然而，受传统的人工育苗移栽技术（小群体，壮个体）的影响，“种植密度偏低，氮肥用量过高”的现象在水稻和油菜大面积生产上仍普遍存在。已有研究表明，适当密植可以提高水稻和油菜产量，弥补减氮造成的产量损失，并进一步提高氮肥利用率。此外，提升土壤肥力也可显著提高作物产量以及化学氮肥的回收率与残留率，减少氮肥损失。新形式下，水稻插播、油菜播种等机械化生产方式发展迅速，将更加有利于“密植减氮”栽培的发展。但目前在油籽三熟制秸秆还田下，密植减氮对不同肥力红壤稻田作物产量和耕层氮素的影响还鲜见报道。因此，本研究基于油籽三熟制模式，开展秸秆还田下“密植减氮”栽培对不同肥力红壤稻田作物产量和耕层氮素的影响试验，以期为三熟制区资源节约型与环境友好型生产技术的发展提供科学依据和实践参考。

1 材料与方法

1.1 试验设计

试验于2017年10月至2018年10月在江西省进贤县张公镇牛溪村(28°25′N,116°23′E)进行。该区域属典型的亚热带季风湿润气候，气候温和，雨量充沛。本试验的气象条件总体利于油菜和双季水田生长，各月的气温分布和降水量见图1。开展本试验前，选取水稻产量水平差异较大的地块，采集其耕层0—20 cm土壤样品，分别于新肥与残留和速效氮等养分含量及土壤质地。按照土壤有机质含量相差15 g/kg以上的标准，选取母质相同（第四纪红黏土）且质地相似的较高和较低肥力的2块田设置试验，其耕层的土壤基本理化性状见表1。图1 试验点2017—2018年油菜和水稻生育期内各月的气温和降水量

<table>
<thead>
<tr>
<th>土壤 稻</th>
<th>有机质/（g·kg⁻¹）</th>
<th>全氮/（g·kg⁻¹）</th>
<th>碱解氮/（mg·kg⁻¹）</th>
<th>速效磷/（mg·kg⁻¹）</th>
<th>速效钾/（mg·kg⁻¹）</th>
<th>砂粒/%</th>
<th>粉粒/%</th>
<th>钙粒/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>高肥力</td>
<td>5.28</td>
<td>19.7</td>
<td>1.16</td>
<td>142.1</td>
<td>17.8</td>
<td>168.3</td>
<td>23</td>
<td>55</td>
</tr>
<tr>
<td>低肥力</td>
<td>5.42</td>
<td>36.8</td>
<td>2.54</td>
<td>238.7</td>
<td>26.3</td>
<td>241.6</td>
<td>22</td>
<td>54</td>
</tr>
</tbody>
</table>

1.2 试验方法

分别在2种不同肥力的田块开展种植密度×施氮量的二因素试验。其中，施氮量设置常规施氮量（N1）和减施20%（N2）2个水平；种植密度设置常规密度（D1）和增密30%（D2）2个水平。每个处理分设3次重复，小区面积8 m×5 m。油菜、早稻和晚稻常规种植密度（D1）分别为38.46（20 cm×13 cm）、30.77（25 cm×13 cm）、30.77（25 cm×13 cm）穴/m²，密植处理（D2）分别为50.00（20 cm×10 cm）、40.00（25 cm×10 cm）、40.00（25 cm×10 cm）穴/m²；常规施氮量（N1）分别为16.5, 150, 165 kg/hm²，减氮处理
(N2) 分别为 132.120.132 kg/hm²，磷 (P₂O₅)、钾 (K₂O) 施用量均为 90 kg/hm²。

试验采用的油菜品种为“阳光 131”，由中国油料作物研究所提供，水品种为“中嘉早 17”（早、晚季兼用），由中国水稻研究所提供。油菜于 2017 年 10 月 20 日播种，按照 6.0 kg/hm²的用种量和 20 cm 的行距进行条状直播，3～4 月期以 D1 植株距 13 cm，D2 植株距 10 cm 的标准定苗；水稻和钾肥按基肥：碳：氨为 6：2：2 施用，磷肥和硼砂 (含 B 10%，15 kg/hm²) 全作基肥施用；2018 年 4 月 25 日成熟收获。早稻于 2018 年 4 月 2 日播种，4 月 30 日移栽，7 月 9 日成熟测产；晚稻于 7 月 3 日播种，7 月 8 日移栽，10 月 6 日成熟测产。早、晚稻都全作基肥，氮和钾
按基肥：碳：氨为 5：3：2 施用。采用 7 寸硬质塑胶泵进行泥浆湿润育秧，播种密度为 2.0 粒/cm²。人工模拟模拟插植，D1，D2 批插规格分别为 25 cm × 13 cm 和 25 cm × 10 cm，每穴单株 4 株。试验前茬的稻草已全量还田，试验中所有处理的秸杆全部切碎原位还田，并采用机械旋耕。其他田间管理按一般高产栽培技术规程进行。

1.2 测定方法

1.2.1 作物产量 成熟期，分小区单独收获籽粒（小区边行除外），晾干后称重测产[6]。

1.2.2 地上部干物质积累量 成熟期，采用 5 点取样法在每小区随机取 10 穴长势较为一致的植株（小区边行不取），油菜按茎杆、角壳与籽粒分开，水稻按茎杆、叶茎、穗壳分开，之后于 105 °C 条件下杀青 30 min，再于 75 °C 条件下烘干至恒重，冷却至室温后称重[6]。

1.2.3 株株含氮量 结合成熟期地上部干物质积累量测定，用万能粉碎机将植株样品粉碎，过 0.5 mm 筛，再用凯氏定氮仪 FOSS 2300 测定植株含氮量[11]。

1.2.4 土壤全氮和碱解氮含量 增加收获之后，按五点取样法以每小区 0～20 cm 耕作层土壤，自然风干后磨碎过筛，分别采用凯氏法、碱解扩散法[13] 测定土壤全氮和碱解氮含量。

作物地上部氮积累量 (kg/hm²) = 成熟期单位面积地上部干物质重 × 株株含氮量[12]。

氮肥偏生产力 (kg/kg) = 作物籽粒产量 / 施氮量[17]

氮素籽粒生产效率 (kg/kg) = 作物籽粒产量 / 地

上部植株氮积累量[17]

耕层氮素库容 (kg/hm²) = 土壤氮含量 × 土壤容

重 × 土壤深度[16]

1.3 数据处理

用 Microsoft Excel 2010 软件进行数据分析与制图，用 DPS 7.05 软件进行统计分析。

2 结果与分析

2.1 密植减氮对不同肥力红壤稻田作物产量的影响

由试验结果(表 2) 可知，土质肥力、种植密度和氮肥施用量对油菜及双季水稻产量均有显著影响，但互作效应未达显著水平。在相同种植密度和氮肥施用量条件下，土壤肥力越高油菜及水稻产量也越高。相比低肥力田块，高肥力田块油菜、早稻及晚稻各处理平均产量分别提高了 12.57%，10.26%，13.58%，周年增产 1867.80 kg/hm²（增幅 12.24%）。而在相同肥力条件下，3 季作物产量总体表现出随施氮量的减少而降低，随种植密度的增加而增加的趋势。产量偏压低肥力显著高于高肥力。无论土壤肥力高低，3 季作物产量均以增施 30% + 常规施氮量处理 (D2N1) 最高，常规密度 + 加氮 5% 处理 (D1N2) 最低，D2N1 在高肥力和低肥力条件下分别比 D2N1 显著增产 8.98% 和 16.61%，而在高肥力条件下与常规密度 + 常规施氮量处理 (D1N1) 差异并不显著。总体而言，在油菜稻 3 氮施秆还田条件下，密植减氮处理 (D2N2) 能够达到甚至略高于常规密度 + 常规施氮量处理 (D1N1) 的产量水平，尤其是在高肥力条件下，但在低肥力条件下其产量要显著低于 D2N1。表 2 密植减氮对不同肥力红壤稻田作物产量的影响

<table>
<thead>
<tr>
<th>土壤肥力</th>
<th>处理</th>
<th>油菜</th>
<th>早稻</th>
<th>晚稻</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1N1</td>
<td>1656.30±14.67ab</td>
<td>7812.04±168.84ab</td>
<td>7885.19±296.17ab</td>
<td></td>
</tr>
<tr>
<td>D1N2</td>
<td>1568.35±37.03ab</td>
<td>7514.81±201.43ab</td>
<td>7611.11±284.78ab</td>
<td></td>
</tr>
<tr>
<td>D2N1</td>
<td>1706.48±60.29a</td>
<td>8186.30±315.73a</td>
<td>8302.78±312.52a</td>
<td></td>
</tr>
<tr>
<td>D2N2</td>
<td>1659.81±52.35a</td>
<td>7954.63±265.28a</td>
<td>8061.11±203.65ab</td>
<td></td>
</tr>
<tr>
<td>D1N1</td>
<td>1473.45±42.05ab</td>
<td>7226.11±205.93ab</td>
<td>7054.41±262.92ab</td>
<td></td>
</tr>
<tr>
<td>D1N2</td>
<td>1372.96±41.53c</td>
<td>6532.15±176.43c</td>
<td>6946.30±196.13c</td>
<td></td>
</tr>
<tr>
<td>D2N1</td>
<td>1555.19±53.85a</td>
<td>7671.30±258.14a</td>
<td>7556.56±235.39a</td>
<td></td>
</tr>
<tr>
<td>D2N2</td>
<td>1435.46±43.78bc</td>
<td>7118.52±280.56b</td>
<td>6945.37±187.71b</td>
<td></td>
</tr>
</tbody>
</table>

肥力 F	*	*	*	*
密度 D	*	*	*	*
氮肥 N	*	*	*	*
F×D	ns	ns	ns	ns
F×N	ns	ns	ns	ns
D×N	ns	ns	ns	ns
F×D×N	ns	ns	ns	ns

注：表中数字为平均值 ± 标准差，同列不同小写字母表示不同肥力下处理间差异显著 (P<0.05)，* 和 ** 分别表示差异显著及在 0.05 和 0.01 水平上差异显著。下同。
度或者氮肥用量的增加而逐渐增加的趋势。在高施肥条件下，油菜、早稻及晚稻各处理平均干物质积累量较之低肥力条件下分别显著提高了12.65%，13.89%，14.91%。与常规种植密度(D1)相比，油菜、早稻及晚稻季密植处理(D2)干物质积累量在高肥力和低肥力条件下分别增加了4.87%，6.59%，6.04%和5.19%，7.37%，6.28%；而相比常规施氮量(N1)，减氮处理(N2)则分别减少了3.54%，5.88%，7.69%和11.03%，10.19%，9.68%。在2种土壤肥力条件下，3季作物地上部干物质积累量均为D2N1最高，且显著高于最低值处理D1N2。在高肥力下的晚稻季和低肥力下的3季均显著高于密植减氮处理(D2N2)。密植减氮处理(D2N2)地上部干物质积累量在高肥力下略高于D1N1(晚稻季除外)，在低肥力下则略低于D1N1。但差异均未达到显著水平。可见，在油稻稻三熟轮作下，秸秆还田并实现密植减氮能够保证油菜及双季水稻的正常生长。

表 3 密植减氮对不同肥力红壤稻田作物地上部干物质累积量的影响

<table>
<thead>
<tr>
<th>土壤肥力</th>
<th>处理</th>
<th>油菜</th>
<th>早稻</th>
<th>晚稻</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1N1</td>
<td>5925.89±197.58ab</td>
<td>12275.13±346.78ab</td>
<td>12881.21±532.48ab</td>
<td>12881.21±532.48ab</td>
</tr>
<tr>
<td>D1N2</td>
<td>5844.23±194.62a</td>
<td>11608.82±360.81b</td>
<td>11697.69±349.86c</td>
<td>11697.69±349.86c</td>
</tr>
<tr>
<td>D2N1</td>
<td>4710.00±239.88a</td>
<td>13101.98±488.99a</td>
<td>13667.87±548.37a</td>
<td>13667.87±548.37a</td>
</tr>
<tr>
<td>D2N2</td>
<td>6004.45±273.38a</td>
<td>12358.67±497.93b</td>
<td>12710.67±535.76b</td>
<td>12710.67±535.76b</td>
</tr>
<tr>
<td>D1N3</td>
<td>5385.77±113.04a</td>
<td>11043.90±300.42a</td>
<td>11234.97±471.31b</td>
<td>11234.97±471.31b</td>
</tr>
<tr>
<td>D2N3</td>
<td>4905.47±244.39a</td>
<td>9848.41±308.48c</td>
<td>10076.28±319.84c</td>
<td>10076.28±319.84c</td>
</tr>
<tr>
<td>D1N4</td>
<td>5725.00±318.59a</td>
<td>11688.93±332.26a</td>
<td>12086.40±478.46a</td>
<td>12086.40±478.46a</td>
</tr>
<tr>
<td>D2N4</td>
<td>5101.17±277.52a</td>
<td>10745.56±347.03b</td>
<td>10883.47±264.47b</td>
<td>10883.47±264.47b</td>
</tr>
</tbody>
</table>

2.3 密植减氮对不同肥力红壤稻田作物地上部氮累积量的影响

从表4可以看出，与产量及地上部干物质积累量变化规律相似，各处理3季作物地上部氮累积量也随着土壤肥力、种植密度及氮肥用量的增加呈增加的趋势。在高肥力条件下，油菜、早稻及晚稻各处理平均地上部氮累积量较之低肥力条件下分别显著增加了13.48%，13.92%，15.32%。相比常规种植密度(D1)，油菜、早稻及晚稻季密植处理(D2)地上部氮累积量在高肥力和低肥力条件下分别显著增加了3.92%，5.04%，5.33%和5.56%，5.73%，6.26%；而与常规施氮量(N1)相比，减氮处理(N2)分别减少了7.32%，8.83%，9.99%和10.97%，9.61%，10.88%。无论在高肥力还是低肥力条件下，3季作物地上部氮累积量均以D2N1最高，且均显著高于最低处理D1N2，在高肥力下的水稻季和低肥力下的3季还显著高于密植减氮处理(D2N2)。与D1N1相比，密植减氮处理(D2N2)地上部氮累积量有所降低，尤其是在低肥力条件下，但差异未达显著水平。结果表明，在油稻稻三熟轮作条件下，密植减氮栽培在短期内基本可以满足油菜及水稻生育期的氮素需求。

表 4 密植减氮对不同肥力红壤稻田作物地上部氮累积量的影响

<table>
<thead>
<tr>
<th>土壤肥力</th>
<th>处理</th>
<th>油菜</th>
<th>早稻</th>
<th>晚稻</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1N1</td>
<td>81.98±4.60ab</td>
<td>155.55±3.54ab</td>
<td>163.68±4.58ab</td>
<td>163.68±4.58ab</td>
</tr>
<tr>
<td>D1N2</td>
<td>75.34±3.56ab</td>
<td>141.83±2.47c</td>
<td>147.27±2.65c</td>
<td>147.27±2.65c</td>
</tr>
<tr>
<td>D2N1</td>
<td>84.53±4.89a</td>
<td>163.40±5.14a</td>
<td>170.73±5.19a</td>
<td>170.73±5.19a</td>
</tr>
<tr>
<td>D2N2</td>
<td>78.95±2.83ab</td>
<td>148.96±4.11bc</td>
<td>156.78±4.43bc</td>
<td>156.78±4.43bc</td>
</tr>
<tr>
<td>D1N1</td>
<td>72.21±4.62a</td>
<td>136.13±5.86b</td>
<td>138.93±6.46b</td>
<td>138.93±6.46b</td>
</tr>
<tr>
<td>D1N2</td>
<td>65.30±2.19b</td>
<td>126.35±3.14bc</td>
<td>129.55±4.58bc</td>
<td>129.55±4.58bc</td>
</tr>
<tr>
<td>D2N1</td>
<td>77.33±4.29b</td>
<td>147.50±5.98a</td>
<td>152.24±7.06a</td>
<td>152.24±7.06a</td>
</tr>
<tr>
<td>D2N2</td>
<td>67.83±2.38bc</td>
<td>130.01±5.72bc</td>
<td>133.04±5.63bc</td>
<td>133.04±5.63bc</td>
</tr>
</tbody>
</table>

2.4 密植减氮对不同肥力红壤稻田作物氮利用率的影响

由表5可知，氮肥偏生产力和氮素籽粒生产效率在不同肥力条件下表现不一。其中，氮肥偏生产力在高肥力条件下更高，油菜、早稻及晚稻各处理平均氮肥偏生产力较之低肥力条件下分别显著提高了12.82%，10.61%，13.89%；而氮素籽粒生产效率则反之，但在高、低肥力条件下总体差异较小。在相同肥力条件下，3季作物氮肥偏生产力和氮素籽粒生产效率均表现为随种植密度的增加和氮肥用量的减少而提高的趋势，氮肥偏生产力变化尤为显著。相比常规种植密度(D1)，密植处理(D2)油菜、早稻及晚稻季氮肥偏生产力在高肥力和低肥力条件下分别提高了4.96%，5.38%，5.61%和5.14%，7.73%，8.02%；氮素籽粒生产效率分别提高了2.31%，0.56%，1.09%和1.22%，2.08%，2.93%；而与常规施氮量(N1)相比，减氮处理(N2)分别提高了20.31%，20.86%，21.24%和15.90%，14.47%，16.01%。氮素籽粒生产效率分别提高了5.31%，6.09%，6.54%和5.22%，3.94%，3.27%。无论土壤肥力高低，3季作物的氮肥偏生产力和氮素籽粒生产效率均以D2N2最高，D1N1最低，而且2个处理间差异显著。表明油稻稻三熟轮作还田条件下，通过密植减氮栽培能够显著提高氮肥利用效率。

2.5 密植减氮对不同肥力红壤稻田耕层氮素含量及库容量的影响

除低肥力条件下的碱解氮之外，密植减氮对不同肥力红壤稻田耕层氮素含量及库容量的影响较小(表6)。总体来看，耕层土壤全氮、碱解氮含量以及相应的氮素库容量表现为随亲种植密度的增加和氮肥施用量的减少而降低的变化趋势，其中，碱解氮的减少表明大于密植处理，碱解氮及其库容量对处理
响应更为敏感。在低肥力条件下，各处理的解氨含量及其库容量变化尤为显著，DIN2 和 DIN2 处理均显著低于 DIN1 处理（解氨氮含量分别降低了 11.04% 和 13.93%，解氨氮库容分别降低了 9.88% 和 13.59%）。

总之，在水稻稻三熟茬带条件下，短期内的氮化效果并不会造成红壤稻田耕层土壤全氮含量及其库容量显著降低，但会显著降低低肥力下红壤稻田耕层的解氨氮含量及其库容量。

表 5 密植减氮对不同肥力红壤稻田作物氮肥利用的影响

<table>
<thead>
<tr>
<th>土壤肥力</th>
<th>氮肥偏生产力</th>
<th>氮素籽粒粒生效率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水菜</td>
<td>早稻</td>
</tr>
<tr>
<td>高肥力</td>
<td>DIN1</td>
<td>9.92±0.25c</td>
</tr>
<tr>
<td></td>
<td>DIN2</td>
<td>11.88±0.23b</td>
</tr>
<tr>
<td></td>
<td>D2N1</td>
<td>10.34±0.37c</td>
</tr>
<tr>
<td></td>
<td>D2N2</td>
<td>12.58±0.35a</td>
</tr>
<tr>
<td>低肥力</td>
<td>DIN1</td>
<td>8.93±0.25b</td>
</tr>
<tr>
<td></td>
<td>DIN2</td>
<td>10.41±0.31a</td>
</tr>
<tr>
<td></td>
<td>D2N1</td>
<td>9.43±0.33b</td>
</tr>
<tr>
<td></td>
<td>D2N2</td>
<td>10.87±0.33a</td>
</tr>
</tbody>
</table>

表 6 密植减氮对不同肥力红壤稻田耕层氨含量及库容量的影响

<table>
<thead>
<tr>
<th>土壤肥力</th>
<th>处理</th>
<th>全氮</th>
<th>氮素籽粒粒生效率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>含量/（g·kg⁻¹）</td>
<td>库容量/（g·kg⁻¹）</td>
</tr>
<tr>
<td>高肥力</td>
<td>DIN1</td>
<td>2.62±0.17a</td>
<td>4930.30±316.38a</td>
</tr>
<tr>
<td></td>
<td>DIN2</td>
<td>2.58±0.14a</td>
<td>4875.60±261.76a</td>
</tr>
<tr>
<td></td>
<td>D2N1</td>
<td>2.60±0.14a</td>
<td>4895.52±258.89a</td>
</tr>
<tr>
<td></td>
<td>D2N2</td>
<td>2.51±0.08a</td>
<td>4787.89±183.46a</td>
</tr>
<tr>
<td>低肥力</td>
<td>DIN1</td>
<td>1.41±0.09a</td>
<td>2808.89±185.21a</td>
</tr>
<tr>
<td></td>
<td>D2N1</td>
<td>1.38±0.07a</td>
<td>2778.50±180.64a</td>
</tr>
<tr>
<td></td>
<td>D2N2</td>
<td>1.40±0.08a</td>
<td>2789.07±162.24a</td>
</tr>
<tr>
<td></td>
<td>D2N2</td>
<td>1.34±0.07a</td>
<td>2675.16±148.55a</td>
</tr>
</tbody>
</table>

3 讨论

土壤肥力是红壤稻田作物实现丰产的基础[1]。已有研究[18]表明，水稻在不施氨肥条件下基础产量的变化与红壤肥力的变化基本一致，以土壤有机质含量来确定红壤稻田肥力的高低是相对可行的。本研究表明，提高土壤肥力能够促进油菜及冬小麦水稻群体生长，显著提高作物产量，而使用氨肥降低了产量，且减氮率随土壤肥力的降低而显著提高。这主要是因为，土壤肥力越低，其供氮能力越弱，作物生长对氨氮的响应就越敏感，因而氨氮的减氮潜力也就越小[18,20-23]。另外，考虑到秸秆还田的节肥效应，本试验设置的常规施氮量相对偏低[22-26]。具体的肥效比较也取决于对氮处理的肥料用量，对照处理的氮肥用量越低，能够减肥的空间自然也越大[21]。而若对照处理的施肥方式本身就不合理，对施氮量或施肥时期的选择即可实现减肥的效果[25]。Cui 等[26]基于全国 360 组水稻田试验发现，在农民及施氮量减少 14.7%～18.1% 条件下，水稻产量仍能增加 10.8%～11.5%；朱芸等[27]通过长江流域的 535 组油菜田试验得出，相比农民习惯施肥，推荐施肥增产显著，且农民习惯施肥还有较大的减氮空间。因此，还应该根据土壤的肥力水平来确定相应的氮肥用量及最优的施用方式[18,28]。

合理密植，是我国农业“八字宪法”的要义之一。但受传统的人工育苗移栽技术（小群体、大群体）的影响，农户担心增加了密度，既减少了玉米又容易倒伏而减产[16]。因此，无论是水稻还是油菜，实际生产中的种植密度都显著偏低。本研究表明，油菜三季作物产量均随种植密度的增加而增加，在低肥力条件下增产更加显著。与传统的人工育苗移栽相比，直播油菜和机插水稻的个体偏好，在一定范围内增密的增产效果更加明显[14,17]。本研究还发现，密植减氮栽培能够有效保证油菜和水稻正常生长，达到与常规栽培模式相当，甚至更高的产量水平，尤其是在高肥力条件下。这与以往的研究[7,14,17]结果基本一致。适当增密能够弥补因减氮施肥引起的水稻有效穗和油菜角果数的减少，提高了群体的光能利用率，进而保证群体数量的基础上优化群体的质量[17,16]。对于水稻稻三熟茬模式，生产季节长，品种生育期短，且周年
施肥量大，合理密植自然更容易达到“增密增产，增密补迟，增密节下的”效果。特别是在秸秆含量还田下，秸秆还田到下季作物种植间隔时间短，大量高碳氮配的秸秆腐解能改善微生物对土壤氮的固定，减氮则可能进一步抑制作物前期内生生长。本研究中的减氮处理地上部生物量及氮积累量有所降低也佐证了这一点。由于在较高产量水平上，氮素依然是最主要的限制因子，而作物当季所需氮素大部分源自土壤，较高的土壤肥力有利于缓解微生物对氮素的固定，因此，多熟制密植减氮栽培模式在高肥力条件下效果更佳。

与前人[14-17]的研究相似，2种施肥条件下3季作物氮肥偏施和氮素籽粒生产均表现为随种植密度的增加和氮肥用量的减少而升高的趋势，密植减氮栽培显著提高了氮肥利用效率。合理减氮能有效降低稻田土壤氮素径流与漏失损失，提高氮肥利用效率，并维持水稻丰产[18]。而当密植有利于根系群体生长，促进作物对养分的吸收利用，从而提高肥料利用率[16]。朱珊等[14]研究表明，达到相同产量水平时，油菜密植比稀植节氮22.9%～30.6%，提高氮肥利用率3.6%～6.8%。陈佳娜等[17]也发现，双季机械插播在低氮条件下的氮肥利用率显著高于高氮处理，在低氮密植条件下，可显著增加产量和氮肥利用率。相关氮素常密，减氮密植显著降低了双季稻田的土壤氮素表观盈亏量和氮素损失量，显著提高了氮素利用率[19]。土壤温度是影响氮肥吸收利用、土壤氮素固定与损失途径的重要因素[11]。本研究也发现，在高肥力条件下减氮密植更有利于氮肥利用率的提高，主要原因有：一是高肥力土壤能够供给更多更均衡的作物必需养分，且土壤结构更优，能够维持更高地下部和地上部生长，从而提高作物的氮素吸收能力[30]；二是高肥力土壤缓冲能力更强，田间氮素生物量积累量也更高，对氮素分层的固持能力更强，有利于减少氮素损失[31]；三是高肥力土壤拥有更丰富的碳源，土壤微生物数量多、活性强，土壤碳氮循环耦合紧密，能保持更多的活性氮[14,32]。总之，高肥力土壤有利于协调氮素供应与作物需求，提高土壤氮素固持能力，进而显著降低氮素损失。提高土壤肥力，能够增加肥料效、节约肥料并实现丰产。

4 结 论

（1）提高土壤肥力和增加种植密度能够促进油菜及双季水稻群体生长，显著提高3季作物产量。密植减氮栽培可以满足油稻稻3季作物生育期内的氮素需求，保证作物正常生长，并明显提高氮肥利用效率，从而达到甚至略高于常规栽培的产量水平。（2）短期内的密植减氮栽培并不会造成耕层土壤全氮含量及库容量显著降低，但在低肥力条件下显著降低了耕层的碱解氮含量及库容量。

参考文献：
第5期
王芳东等：水稻水溶性有机碳和氮素的影响

1213-1224.

[21] 黄山, 汤军, 莫萍等, 冬季紫云英和稻草还田下氮肥施